

Available online at www.sciencedirect.com

Tetrahedron Letters 45 (2004) 1769-1771

Tetrahedron Letters

Facile synthesis of 3-trimethylsilylindazoles by [3+2]cycloaddition reaction of lithium trimethylsilyldiazomethane with benzynes

Yoshimichi Shoji, Yoshiyuki Hari and Toyohiko Aoyama*

Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan

Received 13 November 2003; revised 12 December 2003; accepted 12 December 2003

Abstract—[3+2]Cycloaddition reaction of lithium trimethylsilyldiazomethane with benzynes, generated from halobenzenes, gave the corresponding 3-trimethylsilylindazoles in good to moderate yields.

© 2003 Elsevier Ltd. All rights reserved.

Indazole is well known as an aza analogue of indole, and a number of indazole derivatives have powerful pharmacological activities, for example, anti-inflammatory, anti-tumor, anti-HIV, anti-depressant, and contraceptive activities, etc.1 Various methods for the preparation of indazoles have been reported. The cyclization of o-methylbenzenediazonium salts,² N-(2-nitrobenzylideneamines),³ o-methyl-N-nitrosoanilines,⁴ and o-acylarylhydrazines⁵ or hydrazones of *o*-acylbenzenes⁶ is often used, though these classical methods are multistep reactions. Recently, palladium-catalyzed intramolecular amination of o-bromobenzylhydrazines giving Nsubstituted indazoles has also been reported.⁷ On the other hand, the [3+2]cycloaddition reaction of diazo compounds such as ethyl diazoacetate⁸ and α -diazoketones⁹ with benzynes is an attractive strategy for the construction of the indazole nucleus, but these methods are tedious and require the use of explosive o-benzenediazonium carboxylates as benzyne precursors.

We have already demonstrated that lithium trimethylsilyldiazomethane (TMSC(Li)N₂), easily prepared from stable and safe trimethylsilyldiazomethane (TMSCHN₂) and *n*-butyllithium or lithium diisopropylamide (LDA), is quite useful as a [C–N–N]azole synthon for the preparation of azoles.¹⁰ For instance, TMSC(Li)N₂ reacts smoothly with α , β -unsaturated nitriles¹¹ and sulfones,¹² and β -amino- α , β -unsaturated ketones¹³ to give the corresponding pyrazoles in high to good yields. Additionally, TMSCHN₂ acts as a [C-N-N]azole synthon in the reaction with 1,4-quinones.¹⁴ As an extension of these works, we now wish to report the [3+2]cycloaddition reaction of TMSC(Li)N₂ with benzynes, generated from halobenzenes, giving 3-trimethyl-silylindazoles.

First, we examined the reaction of benzyne generated from nonsubstituted halobenzenes with TMSC(Li)N₂. Treatment of fluorobenzene (1 equiv) and TMSCHN₂ (2 equiv) in the presence of LDA (4 equiv) in Et₂O gave the desired 3-trimethylsilylindazole 1 in 69% yield (entry 1 in Table 1).¹⁵ Replacement of LDA by sterically

Table 1. Synthesis of 3-trimethylsilylindazole (1)^a

Entry	Х	Base	Time (h)	Yield (%) ^b
1	F	LDA	3	69
2	F	LTMP	3	86
3°	F	LTMP	3	67
4^{d}	F	LTMP	7	54
5	Cl	LTMP	24	78
6	Br	LTMP	24	74
7	Ι	LTMP	24	41

 a Me_3SiCHN_2 (2.0 equiv) and LTMP (4.0 equiv) were used. b Isolated yield.

^c Me₃SiCHN₂ (1.2 equiv) and LTMP (2.4 equiv) were used.

^dTHF in place of Et₂O as a solvent was used.

Keywords: Benzynes; Cycloaddition; Indazoles; Lithium trimethyl-silyldiazomethane; Trimethylsilyldiazomethane.

^{*} Corresponding author. Tel./fax: +81-52-836-3439; e-mail: aoyama@phar.nagoya-cu.ac.jp

		R^{2} X R^{3} R^{4}	Me ₃ SiCHN ₂ Et ₂ O, re	2, LTMP R	R^1 H N $+$ R^4 SiMe ₃	R^{1} R^{2} R^{3} R^{4} R^{4} R^{4}	ŞiMe ₃ N	
Entry	\mathbb{R}^1	\mathbb{R}^2	R ³	\mathbb{R}^4	Х	Time (h)	Yield (%)	Ratio a:b ^c
1	OMe	Н	Н	Н	F	3	61 (2a+2b)	73:27 ^d
2	OBn	Н	Н	Н	F	8.5	50 (3a+3b)	75:25 ^d
3	NMe ₂	Н	Н	Н	Br	48	36 (4a+4b)	67:33 ^e
4	Br	Н	Н	Н	Br	4.5	49 (5a+5b)	62:38 ^d
5	OBu^t	Н	Н	Н	F	1.5	26 (6a+6b)	83:17 ^e
6	Me	Н	Н	Н	F	7.5	65 (7a+7b)	45:55 ^d
7	Н	Н	OMe	Н	F	5	75 (8a+8b)	50:50 ^d
8	Н	Н	CF_3	Н	F	3	74 (9a+9b)	50:50 ^d
9	OMe	Н	Н	OMe	F	14.5	55 (10)	_
10	Н	Me	Me	Н	F	2	73 (11)	

^a All products gave satisfactory spectral data and elemental analysis (or HRMS).

^b Me₃SiCHN₂ (2.0 equiv) and LTMP (4.0 equiv) were used.

^cThe ratio of regioisomers was calculated by ¹H NMR measurement.

^d The structures of the compounds were determined in comparison with the known compounds after desilylation of the corresponding silylindazoles by treatment with 10% ethanolic KOH.¹⁹

^e The structures of the compounds were determined by NOESY measurements.

hindered lithium 2,2,6,6-tetramethylpyperidide (LTMP) caused a significant increase in the yield (86%) (entry 2).¹⁶ Two equivalents of TMSCHN₂ was required to conduct the reaction smoothly because a benzyne intermediate is a short-lived reactive species (entries 2 and 3). Et₂O seems to be the solvent of choice though THF can be used (entries 2 and 4). Under the same reaction conditions (entry 2), chloro- and bromo-benz-ene also reacted with TMSC(Li)N₂ to give 1 in good yields (entries 5 and 6) though prolonged reaction time was required. However, the reaction with iodobenzene was extremely slow and the starting material, iodobenzene, did not disappear on TLC after 24 h; consequently, the yield of **1** was moderate (entry 7).

Next, using the optimized reaction conditions (entry 2 in Table 1), the reaction of $TMSC(Li)N_2$ with halobenzenes bearing various substituents was examined (Table $2).^{17,18}$ o-Fluoroanisole smoothly reacted with TMSC(Li)N₂ to afford the indazoles in 61% yield, but the indazoles obtained were a mixture of 7-methoxy-3trimethylsilylindazole 2a and its regioisomer 2b in good selectivity (2a:2b = 73:27), probably due to the +I effect of the MeO group (entry 1). Similar regioselectivities were observed in the reaction with o-substituted halobenzenes bearing the BnO, Me_2N , and Br groups (entries 2-4).20 Replacement of the MeO group by the bulky t-BuO one increased the regioselectivity (entry 5). The reaction with o-fluorotoluene, p-fluoroanisole, and p-fluoro(trifluoromethyl)benzene also afforded the desired 7a,b, 8a,b, and 9a,b in good yields, though no or little regioselectivity was observed (entries 6–8). The use of 2,5-dimethoxy- and 3,4-dimethyl-fluorobenzene as substrates gave the corresponding indazole 10 and

Scheme 1. Proposed reaction mechanism.

11 as the sole isolable product in good yields, respectively.

The reaction mechanism of this new synthesis of indazoles may be as follows: In analogy with related studies,²¹ the first step is a nucleophilic attack of TMSC(Li)N₂ to the benzyne. Subsequent cyclization would then produce the indazole intermediate, which is hydrolyzed with water to afford 3-trimethylsilylind-azoles as shown in Scheme 1.

In conclusion, the present method using commercially available TMSCHN_2 will provide a facile synthesis of indazoles from halobenzenes in one step. Currently, we are investigating the conversion of the trimethylsilyl group of 3-trimethylsilylindazoles into various functional groups.

Acknowledgements

This work was financially supported by a Grant-in-Aid for Scientific Research (KAKENHI), a Grant-in-Aid from The Fujisawa Foundation, and a Grant-in-Aid for Research in Nagoya City University.

References and notes

- 1. For a review, see Bräse, S.; Gil, C.; Knepper, K. *Bioorg. Med. Chem.* **2002**, *10*, 2415–2437.
- (a) Poter, H. D.; Perterson, W. D. In *Organic Syntheses*; Wiley: New York, 1955; Collect. Vol. 3, pp 660–661; (b) Bartsch, R. A.; Yang, I.-W. *J. Heterocycl. Chem.* **1984**, *21*, 1063–1064.
- (a) Cadogan, J. I. G.; Cameron-Wood, M.; Mackie, R. K.; Searle, R. J. G. J. Chem. Soc. 1965, 4831; (b) Akazome, M.; Kondo, T.; Watanabe, Y. J. Org. Chem. 1994, 59, 3375–3380.
- (a) Kovach, E. G.; Barnes, D. E. J. Am. Chem. Soc. 1954, 76, 1176–1178; (b) Huisgen, R.; Bast, K. Org. Synth. 1962, 42, 69–72.
- Fernandez, P. A.; Bellamy, T.; Kling, M.; Madge, D. J.; Selwood, D. L. *Heterocycles* 2001, 55, 1813–1816.
- (a) Caron, S.; Vazquez, E. Synthesis 1999, 588–592; (b) Lee, F.-Y.; Lien, J.-C.; Huang, L.-J.; Huang, T.-M.; Tsai, S.-C.; Teng, C.-M.; Wu, C.-C.; Cheng, F.-C.; Kuo, S.-C. J. Med. Chem. 2001, 44, 3746–3749.
- (a) Song, J. J.; Yee, N. K. Org. Lett. 2000, 2, 519–521; (b) Song, J. J.; Yee, N. K. Tetrahedron Lett. 2001, 42, 2937– 2940.
- 8. Huisgen, R.; Knorr, R. Naturwissenschaften 1961, 48, 716.
- (a) Ried, W.; Schön, M. Ann. Chem. 1965, 689, 141–144;
 (b) García-Abbad, E.; García-López, M. T.; García-Muñoz, G.; Stud, M. J. Heterocycl. Chem. 1976, 13, 1241–1244.
- For reviews, see (a) Shioiri, T.; Aoyama, T. In Science of Synthesis; Fleming, I., Ed.; Georg Thieme: Stuttgart, 2002; Vol. 4, pp 569–577; (b) Shioiri, T.; Aoyama, T. In Advances in the Use of Synthons in Organic Chemistry; Dondoni, A., Ed.; JAI: London, 1993; Vol. 1, pp 51–101.
- 11. Aoyama, T.; Inoue, S.; Shioiri, T. *Tetrahedron Lett.* **1984**, *25*, 433–436.
- 12. Asaki, T.; Aoyama, T.; Shioiri, T. Heterocycles 1988, 27, 343–346.
- Ito, T.; Hatano, K.; Aoyama, T.; Shioiri, T. *Heterocycles* 1993, 35, 41–46.
- Aoyama, T.; Nakano, T.; Nishigaki, S.; Shioiri, T. *Heterocycles* 1990, 30, 375–379.
- 15. Data for 3-trimethylsilylindazole (1): Colorless crystals (recrystallization from *n*-hexane). Mp 154–155 °C. IR (neat) v_{max} : 2986, 1374, 1242, 1048, 847 cm⁻¹. ¹H (CDCl₃) δ : 0.46 (9H, s), 7.16 (1H, dd, J = 8, 8 Hz), 7.37 (1H, dd, J = 8, 8 Hz), 7.54 (1H, d, J = 8 Hz), 7.83 (1H, d, J = 8 Hz). ¹³C (CDCl₃) δ : -0.7 (×3), 110.1, 120.6, 121.6, 126.2, 128.6, 140.7, 147.5. Mass (EI): m/z 190 (M⁺, 41.6), 175 (M⁺-Me, 100). Anal. Calcd for C₁₀H₁₄N₂Si: C, 63.11; H, 7.41; N, 14.72. Found: C, 62.97; H, 7.43; N, 14.79.
- 16. Representative procedure: To a solution of lithium tetramethylpiperidide, which was prepared from TMP (0.34 mL, 2.0 mmol) and *n*-BuLi (1.58 M in *n*-hexane, 1.27 mL, 2.0 mmol) in Et₂O (1.5 mL), TMSCHN₂ (2.40 M in *n*-hexane, 0.42 mL, 1.0 mmol) was added dropwise under a nitrogen atmosphere at −78 °C and stirred for

15 min. A solution of fluorobenzene (47 μ L, 0.5 mmol) in Et₂O (0.5 mL) was added dropwise to a refluxing reaction mixture, and then the whole was heated under reflux for 3 h. After the reaction was quenched by addition of H₂O at 0 °C, a common work-up was carried out. The pure 3-trimethylsilylindazole **1** (81 mg, 86%) as a solid was obtained by flash silica gel column chromatography (*n*-hexane/ethyl acetate = 6:1).

- 17. Each regioisomer could be separated by flash silica gel column chromatography.
- 18. Selected data for 2-11, 2a, ¹H (CDCl₃) δ : 0.45 (9H, s), 3.97 (3H, s), 6.72 (1H, d, J = 8 Hz), 7.07 (1H, dd, J = 8, 8 Hz),7.39 (1H, d, J = 8 Hz); **2b**, ¹H (CDCl₃) δ : 0.42 (9H, s), 3.98 (3H, s), 6.47 (1H, d, J = 8 Hz), 7.12 (1H, d, J = 8 Hz),7.26-7.31 (1H, m); 3a, ¹H (CDCl₃) δ: 0.46 (9H, s), 5.24 (2H, s), 6.81 (1H, dd, J = 8, 8 Hz), 7.06 (1H, dd, J = 8, 8 Hz), 7.06 (1H, dd, J = 8)8 Hz), 7.36–7.48 (6H, m); **3b**, ¹H (CDCl₃) δ: 0.43 (9H, s), 5.22 (2H, s), 6.52 (1H, d, J = 8 Hz), 7.12 (1H, d, J = 8 Hz), 7.37–7.49 (6H, m); 4a, ¹H (CDCl₃) δ : 0.46 (9H, s), 2.95 (6H, s), 6.77 (1H, d, *J* = 8 Hz), 7.07 (1H, dd, J = 8, 8 Hz), 7.42 (1H, d, J = 8 Hz); 4b, ¹H (CDCl₃) δ : 0.45 (9H, s), 2.78 (6H, s), 6.85 (1H, dd, J = 2, 7 Hz), 7.23-7.32 (2H, m); **5a**, ¹H (CDCl₃) δ: 0.48 (9H, s), 7.05 (1H, dd, J = 8, 8 Hz), 7.52 (1H, d, J = 8 Hz), 7.77 (1H, d, J = 8 Hz; **5b**, ¹H (CDCl₃) δ : 0.57 (9H, s), 7.20 (1H, dd, J = 8, 8 Hz), 7.36 (1H, d, J = 8 Hz), 7.52 (1H, d, J = 8 Hz; **6a**, ¹H (CDCl₃) δ : 0.45 (9H, s), 1.47 (9H, s), 6.95 (1H, d, J = 8 Hz), 7.05 (1H, dd, J = 8, 8 Hz), 7.49 (1H, d, J = 8 Hz); **6b**, ¹H (CDCl₃) δ : 0.46 (9H, s), 1.68 (9H, s), 6.68 (1H, d, J = 8 Hz), 7.05 (1H, d, J = 8 Hz), 7.21 (1H, dd, J = 8, 8 Hz); 7a, ¹H (CDCl₃) δ : 0.46 (9H, s), 2.57 (3H, s), 7.08–7.16 (2H, m), 7.67 (1H, d, J = 8 Hz); 7b, ¹H (CDCl₃) δ: 0.49 (9H, s), 2.73 (3H, s), 6.94 (1H, d, J = 8 Hz), 7.23–7.29 (1H, m), 7.39 (1H, d, J = 8 Hz); 8a, ¹H (CDCl₃) δ: 0.47 (9H, s), 3.88 (3H, s), 7.07 (1H, dd, J = 2, 9 Hz), 7.15 (1H, d, J = 2 Hz), 7.47 (1H, d, J = 9 Hz); 8b, ¹H (CDCl₃) δ : 0.46 (9H, s), 3.86 (3H, s), 6.82 (1H, dd, J = 2, 9 Hz), 6.91 (1H, d, J = 2 Hz), 7.67 (1H, d, J = 9 Hz); **9a**, ¹H (CDCl₃) δ : 0.47 (9H, s), 7.59– 7.63 (2H, m), 8.10 (1H, s); 9b, ¹H (CDCl₃) δ: 0.48 (9H, s), 7.37 (1H, d, J = 8 Hz), 7.82 (1H, s), 7.92 (1H, d, J = 8 Hz); 10, ¹H (CDCl₃) δ : 0.40 (9H, s), 3.92 (3H, s), 3.93 (3H, s), 6.31 (1H, d, J = 8 Hz), 6.59 (1H, d, J = 8 Hz); 11, ¹H (CDCl₃) δ : 0.45 (9H, s), 2.37 (3H, s), 2.37 (3H, s), 7.29 (1H, s), 7.55 (1H, s).
- (a) 7-Methoxyindazole: See Ref. 4a; (b) 4-Methoxyindazole and 7-benzyloxyindazole: Schumann, P.; Collot, V.; Hommet, Y.; Gsell, W.; Dauphin, F.; Sopkova, J.; MacKenzie, E. T.; Duval, D.; Boulouard, M.; Rault, S. *Bioorg. Med. Chem. Lett.* 2001, 11, 1153–1156; (c) 7-Bromoindazole: Boulton, B. E.; Coller, B. A. W. Aust. J. Chem. 1974, 27, 2343–2347; (d) 4-Methylindazole and 5-methoxyindazole: Dell'Erba, C.; Novi, M.; Petrillo, G.; Tavani, C. Tetrahedron 1994, 50, 3529–3536; (e) 6-(Trifluoromethyl)indazole was synthesized from 2-methyl-5-(trifluoromethyl)aniline commercially available according to Ref. 2b.
- The reaction of nucleophiles with benzynes generated from halobenzenes bearing substituents such as alkoxy, amino, and halogen groups at the *o*-position, which have +I effect, is well known to give preferentially *m*-substituted benzene derivatives. See: (a) Kametani, T.; Kigasawa, K.; Hiiragi, M.; Aoyama, T.; Kusana, O. J. Org. Chem. 1971, 36, 327–330; (b) Biehl, E. R.; Nieh, E.; Hsu, K. C. J. Org. Chem. 1969, 34, 3595–3599.
- Aoyama, T.; Kabeya, M.; Fukushima, A.; Shioiri, T. *Heterocycles* 1985, 23, 2363–2366.